Closing Tue: $\quad 14.1,14.3(1), 14.3(2)$ Closing Thu: $\quad 14.4,14.7(1)$

14.1/14.3 Visualizing Surfaces and

 Partial DerivativesThe basic tool for visualizing surfaces is traces.

When $z=f(x, y)$, we typically look at traces given by fixed values of z (height) first. We call these traces level curves, because each curve represents all the points at the same height (level).

A collection of level curves is called a contour map (or elevation map).

Contour Map (Elevation Map) of Mt. St. Helens from 1979 (before it erupted):

Example: Draw a contour map for

$$
z=f(x, y)=y-x
$$

Example: Draw a contour map for $z=\sin (x)-y$

Example: Draw a contour map for

$$
z=f(x, y)=\frac{1}{1+x^{2}+y^{2}}
$$

$$
\text { (use } z=1 / 10,2 / 10, \ldots ., 9 / 10,10 / 10 \text {) }
$$

Graph of $z=f(x, y)=\frac{1}{1+x^{2}+y^{2}}$

14.3 Partial Derivatives

Goal: Get the slope in two different directions on a surface.

Recall the key definition from calculus

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Motivation: Consider

Today we define:
$\frac{\partial z}{\partial x}=f_{x}(x, y)=\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h}$
$\frac{\partial z}{\partial y}=f_{y}(x, y)=\lim _{h \rightarrow 0} \frac{f(x, y+h)-f(x, y)}{h}$

$$
f(x, y)=x^{2} y+5 x^{3}+y^{2}
$$

Find

$$
\text { a. } \frac{d}{d x}[f(x, 2)]=\frac{d}{d x}\left[x^{2}(2)+5 x^{3}+(2)^{2}\right]
$$

b. $\frac{d}{d x}[f(x, 3)]=\frac{d}{d x}\left[x^{2}(3)+5 x^{3}+(3)^{2}\right]$
c. $\frac{d}{d x}[f(x, c)]=\frac{d}{d x}\left[x^{2}(c)+5 x^{3}+(c)^{2}\right]$

Example:
$f(x, y)=x^{3} y+x^{5} e^{x y^{2}}+\ln (y)$

Example:
$g(x, y)=\cos \left(x^{3}+y^{4}\right)$

An Important Note on Variables
A variable can be treated as:

1. A constant
2. An independent variable (input) $\frac{\partial z}{\partial x}=$
3. A dependent variable (output), Examples:
a) One variable functions of \boldsymbol{x} :

$$
\begin{aligned}
& y=x^{2} \\
& \frac{d y}{d x}=
\end{aligned}
$$

d) Multivariable:

$$
z=x^{2}+y^{3} e^{6 y}-5 x y^{4}
$$

$z=x^{2}+y^{3} e^{6 y}-5 x y^{4}$
$\frac{\partial z}{\partial y}=$
e) Multivariable Implicit:

$$
x^{2}+y^{2}-z^{2}=1
$$

b) Related rates:

At time t assume a particle is

$$
\frac{\partial z}{\partial x}=
$$ moving along the path $y=x^{2}$.

$$
\frac{d y}{d t}=\quad \frac{\partial z}{\partial y}=
$$

c) Implicit functions: $x^{2}+y^{2}=1$

$$
\frac{d y}{d x}=
$$

Graphical Interpretations:

Pretend you are skiing on the surface $z=f(x, y)=15-x^{2}-y^{2}$

Second Partial Derivatives

Example: Find all second partials for $z=f(x, y)=x^{4}+3 x^{2} y^{3}+y^{5}$

Concavity in x-direction:

$$
\frac{\partial^{2} z}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial z}{\partial x}\right)=f_{x x}(x, y)
$$

Concavity in y-direction:

$$
\frac{\partial^{2} z}{\partial y^{2}}=\frac{\partial}{\partial y}\left(\frac{\partial z}{\partial y}\right)=f_{y y}(x, y)
$$

Mixed Partials:

$$
\begin{gathered}
\frac{\partial^{2} z}{\partial y \partial x}=\frac{\partial}{\partial y}\left(\frac{\partial z}{\partial x}\right)=f_{x y}(x, y) \\
\frac{\partial^{2} z}{\partial x \partial y}=\frac{\partial}{\partial x}\left(\frac{\partial z}{\partial y}\right)=f_{y x}(x, y)
\end{gathered}
$$

